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- What is Micromechanical Testing Methods for interfacial 
evaluation of composite materials?

- Any fibers and matrix system can be available for brittle, ductile, 
thermosetting, thermoplastic, even ceramic matrix under room 
and high and cryogenic temperatures under short or long terms.

- Fragmentation, microdroplet tests for micro-IFSS versus short 
beam test for macro-ILSS

- NDE using AE by emitting elastic wave coming from damage 
sources can be combined with micromechanical fragmentation test 

- Damage sensing using conductive nano-fillers applicable to 
predict micro-failure of structural composites by 2D or 3D ER

- Biodegradable-, high temperature-, high toughness DCPD-, 
multifunctional-, nano-composites can be applicable for the tests.

Introduction & Background
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Micromechanicial Testing methods &
AE with Electrical Resistance (ER)

Part 1
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v Micro-mechanical test method
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v Wetting test method

- Wetting + 
Gravitation

- Buoyancy
Force

- Hydrophilic - Hydrophobic

Static/dynamic contact angles

Work of adhesion

W%
& = {γ& −(γ'(γ&())/+ − γ',γ&, )/+ − (γ-(γ&())/+

− γ-,γ&, )/+ + (γ'(γ-())/++ (γ',γ-,))/+}

-Third material present-

W% = 2(γ'(γ-())/++(γ',γ-,))/+
-Owens and Wendt equation- A

B

A

B
l

Third 
material 

-Static contact angle- -Dynamic contact angle-

Modeling of wetting equationp
-Young’s equation-

-Wenzel’s equation (Advancing CA < 150o)-

-Cassie-Baxter’s equation (Advancing CA > 150o)-

𝛾!" = 𝛾!# +𝛾#" $ 𝑐𝑜𝑠 𝜃

γ are the surface tension coefficients of
solid-gas (SG), solid-liquid (SL) and
liquid-gas (LG) interfaces.

cos(θA)	is an apparent contact angle.
r		is proportional to the extension of surface area 
ACSA is the contact surface.
Aproj is the horizontal projection.

𝑐𝑜𝑠 𝜃 = 𝑟$ $ 𝑐𝑜𝑠 𝜃%

𝑟$ =
𝐴&!'
𝐴()*+

𝑐𝑜𝑠 𝜃& = 𝑟$𝑓!# 𝑐𝑜𝑠 𝜃% −1+𝑓!#

𝑓./ is the fraction of the solid surface in 
contact with the liquid.
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Rv
fiber is negligible to be conductive fiber.

Rv
matrix is also negligible to be small in volume resistivity.

v Electro-mechanical test method

V I
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Silver Paste

Copper Wire
Mastrix(Paste)

Tensile Load

V

Mastrix(Paste)Fiber Interface

Shear Force

Electro-pullout test

𝑅. = 𝑅/!0123 + 𝑅4 + 𝑅/567308

Cyclic loading test

Matrix Embedded
Length

Current
Contact
Length

Third 
material 

“Contact Resisance”

“Interface effect”
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Electrodeposition

v Treatment/Dispersion methods

Sonication

Plasma treatment

Plasma 
Machine

Extrude

Anode
(carbon fiber)

Cathode
(Pt probe)

Entering 
strongly

Type Product name
(Model name)

Company Picture Feature

1

Sonicator

Ultrasonic 
homogenizer

(UP200S)
Hielscher, Germany

24kHz
Amplitude adjustable : 20~100%

pulse adjustable : 0~100%
Processing capability : 

0.1~2000ml

2

Ultrasonic 
processors, 

Vibra-Cell™
(VC 505)

Sonics & Materials, U.S. 20kHz
Processing capability : 10~250ml

3
T.K. Homo mixer

mark II
(model 2.5)

Primix, Japan
500~12000RPM

Maximum viscosity : 70Pa·S
Processing capability : 3000ml

4

Mixer

Thinky
mixer

(ARM-310)
Thinky, U.S.

Fixed : 2000RPM
Step : 200~2000RPM
Processing capability : 

250ml  250g (net)
250ml  310g (gross)

5
Overhead

Stirrer
(HT 120T)

Daihan scientific
Co. ltd, Korea

50~1000RPM
Maximum viscosity : 150Pa·s

Processing capability : 60,000ml

Dispersion Equipment

‘Surface functional Introduction’
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Journal of Colloid and Interface Science 231, 114-128 (2000)
Interfacial Aspects of Electrodeposited Carbon Fiber-Reinforced Epoxy
Composites Using Monomeric and Polymeric Coupling Agents

Schematic diagram of the ED system.

Schematic illustration of the AE system and SFC
specimen.

Untreated

Dipped

Aged after ED

ED

All fibers under 
wet conditions

Comparison of IFSS depending on various surface treatment methods under
dry and wet conditions.

(top) AE amplitude and (bottom) AE energy as a function of measuring time for 
single-carbon fiber-embedded specimens: (a) untreated,(b) dipped, and (c) ED 
treated.

Schematic illustrations showing (a) the
longitudinal shape of the two-dimensional
interphases between fiber and matrix, and (b)
the cross-sectional region of the modulus and
toughness of the components versus position.
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Composites Science and Technology 60, 439-450 (2000) 
A new method of evaluating the interfacial properties of
composites by means of the gradual multi-fiber fragmentation test

Fiber stress distributions around fiber breakage(s): (a) fiber-2
broken; (b) fiber-1 broken; (c) fiber-8 broken; (d) fiber-9 broken;
(e) fiber-1 and -2 broken; (f) fiber-1, -2 and -3 broken.

(a) The average aspect ratio and (b) IFSS as a function of the reciprocal of the 
inter-fiber separation at 6% and 12% elongation.

A series of photographs with increasing 
of the tensile strain: (a) 1% strain; (b) 
4% strain; (c) 6% strain; (d) 10% strain.

Schematic illustration showing the 
fiber arrangement and the inter-fiber 
separation in two-typed composites: 
(a) the regular multi-fiber
composite; and (b) the gradual multi-
fiber composite.

Effect of the inter-fiber separation on the 
average aspect ratio and IFSS in the regular 
three- and five-fiber composites.

IFSS as a function of the number of
embedded fibers in the single-fiber
and the regular multi-fiber
composites.
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Interfacial and Microfailure Evaluation of Modified Single Fiber–
Brittle Cement Matrix Composites Using an Electro Micromechanical 
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The contact resistivity behavior for the untreated steel
or carbon fiber/cement composites with elapsed time.

Possible schemes
for chemical
reaction among (a)
steel and (b)
carbon fibers, Zr-
coupling agent,
and cement matrix

The contact resistivity and shear stress as a
function of total measuring time and
displacement

(a) no-fiber specimen and single glass
fiber/cement composites under
(b) tensile

Schematic diagram
for the stress
transfer mechanisms
depending on the
applying load
direction in DMC
specimens
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Improvement of interfacial adhesion and nondestructive damage
evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites
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PBO fiber

Kevlar

Typical paper of Prof. Park

SEM photographs for tensely fractured (a) 
PBO and (b) Kevlar fibers

Plots of force vs extension curves for (a) the 
untreated and (b) the plasma-treated PBO 
fibers/epoxy composites

Typical microfailure modes for (a) the 
untreated and (b) the plasma-treated 
PBO fibers/epoxy composites

Plots of force vs extension curves for (a) 
the untreated and (b) the plasma-treated 
Kevlar fibers/epoxy composites

Typical microfailure modes for (a) the 
untreated and (b) the plasma-treated 
Kevlar fibers/epoxy composites

Plots of IFSS vs work of adhesion and polar surface free energy for fibers and matrix
Possible microfailure models of
plasma-treated (a) PBO and (b) Kevlar
fibers under tensile load
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Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-lactide composites using micromechanical
test and nondestructive acoustic emission

Scheme of DMC test.

Mechanical properties for PEA fiber 
with hydrolysis time

Change of diameter for bioabsorbable
fibers with hydrolysis time

Change of IFSS of bioabsorbable
fiber/PLLA composites with hydrolysis time

Microfailure modes of PEA fiber with
hydrolysis time: in (a) the initial state, (b)
after 5 days, and (c) after 10 days

AE energy of PEA fiber with hydrolysis time: (a) the 
initial state, (b) after 5 days, and (c) after 10 days
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Cited 276th
Composites Science and Technology 66, 2686–2699 (2006)
Interfacial evaluation of modified Jute and Hemp fibers/polypropylene
(PP)-maleic anhydride polypropylene copolymers (PP-MAPP)
composites using micromechanical technique and nondestructive
acoustic emission

Jute/PP Hemp/PP
Jute Hemp

Jute

Hemp
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Cited 49th
Composites Science and Technology 64, 983–999 (2004)
Interfacial properties and microfailure degradation mechanisms of bioabsorbable fibers/poly-l-
lactide composites using micromechanical test and nondestructive acoustic emission

Source location test of carbon 
fiber/epoxy composite

No air bubble

Surface damage with vertical scratch

(a) SFC specimen, (b) waveforms of two fractured points,
and (c) magnified waveform (D400:D2000=2.5:0.5).

Internal damage with air bubble
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Cure monitoring and residual stress sensing of single-carbon fiber
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cure monitoring

Electro-
micromech
anical test

Quarter model for FEA simulation 
of residual stress

Difference in ER before and after curing and 
IFSS depending on the gauge length

fine molecular structure in the steel fiber

Electrical resistivity as curing
temperature

Fiber strength and average IFSS 
depending on the gauge length in SFC

Equivalent residual stress by von Mises criterion depending
on the curing conditions: (a) fiber; (b) matrix

“Residual stress between fiber and matrix”



Gyeongsang National University

Nanocomposites Interface & NDEDepartment of Materials Engineering and Convergence Technology

v Electric Micro-Mechanical test using ER

Cited 56th
Composites Part A 70, 1722–1731 (2009)
Interfacial and hydrophobic evaluation of glass fiber/CNT–epoxy 
nanocomposites using electro-micromechanical technique and 
wettability test

“IFSS at cryogenic temperature”
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Evaluation of interfacial properties of atmospheric pressure plasma-treated CNT-phenolic composites by dual matrix fragmentation and acoustic
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The change in mechanical and interfacial properties of GF and CF
reinforced epoxy composites after aging in NaCl solution

Conceptual diagram of fiber corrosion

Glass fiber

Carbon fiber

Glass fiber Carbon fiber

Surface of fibers(FE-SEM)

Schematic of NaCl solution treatment Schematic of fatigue test between fiber and glass fiber Fatigue test of fiber/epoxy resins

Glass
fiber

Surface of fiber/epoxy resin after fatigue test

Carbo
n

Fiber

Fiber fragmentation

Weibull distribution about IFSS 
after fragmentation test

Neat glass

Glass 30 days

Neat carbon

Carbon 30 days

Glass fiber Carbon fiber

AE amplitude and AE energy 
of fibers/epoxy composites

Glass fiber Carbon fiber
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Condition
- Rate : 0.5mm/min
- Gauge length : 5 mm

Condition
- Rate : 0.5mm/min
- Gauge length : 5mm
- Glass fiber : SE-1500
- Epoxy resin : YD-128
(Epoxy fracture)

The Journal of Adhesion 97(5), 438-455 (2021)
Advanced interfacial properties of glass fiber/dopamine-epoxy
composites using a microdroplet pull-out test and acoustic emission
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The Journal of Adhesion 97(5), 438-455 (2021)
Advanced interfacial properties of glass fiber/dopamine-epoxy
composites using a microdroplet pull-out test and acoustic emission
Scheme of micromechanical test

Microdroplet pull-out test Short fiber fragmentation test

AE amplitude and FFT during microdroplet pull-out test

Wettability test
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Interfacial adhesion via wettability test 
versus ER

Part 2
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Comparison of interfacial adhesion of hybrid materials of aluminum/carbon fiber 
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Composites science and technology 142, 98–106 (2017)
Interfacial properties and water resistance of epoxy and CNT-epoxy adhesives on 
GFRP composites

Change of epoxy adhesion after water curing

Schematic of preparation process of GFRP/adhesives specimens
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Spreading condition of epoxy on the CF 
tow using ER method

Condition
- Tow : Carbon fiber 
- (T-700)

Camera

Injection 
gun

Compressive 
sensor

GF mat

Spreading condition of epoxy on the 
GF UD mat using video

Condition
- Tow : Glass fiber 
- (SE-1500)

- Droplet : Epoxy 
(Bisphenol A type)

- Distance of prove : 30 mm

- Droplet : Epoxy 
(Bisphenol A type)

Area: 200 X 200 X 0.1 mm
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Cited 17th
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Interfacial Properties and Permeability of Three Patterned Glass Fiber/Epoxy 
Composites by VARTM
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Interfacial and wetting properties between glass fiber and epoxy resins with different pot life

Fragmentation Test

The relationship between wetting and interfacial property

Pendent Test

Fragmentation of Type 1 with H-glass fiber

Fragmentation of Type 2 with H-glass fiber

Fragmentation of Type 3 with H-glass fiber

Fragmentation of Type 4 with H-glass fiber

Wetting Test
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Damage sensing of Nanocomposites by 
Electrical Resistance (ER)

Part 3
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Basic principle for measuring electrical resistance (ER)
• using Kirchhoff’s law ER can be measured for damage detection due to ER change due to electro-
circuit disconnection and fracture

• Prediction of internal micro-damage prediction

I1

I2

I3

I3 = I1+I2
(R=L/Aρ)

Kirchhoff's Law 
: theory explaining why 

electrical resistance increases 
from damage
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Electrical volume resistivity for CNT/epoxy
composites with CNT volume fraction.

The change in electrical resistance for fiber
tension with CNT content under electro-pullout
test.

Stress–strain curve of CNT composites by (a) tensile
test and (b) apparent modulus measurement.

Damage sensitivity of fiber fracture for (a) 0.1 vol% CNT, (b) 0.5 vol% CNT and
(c) 2.0 vol% CNT under DMC test.

FE-SEM photographs for fracture surface of (a) 0.1 vol% CNT, (b)
0.5 vol% CNT and (c) 2.0 vol% CNT composites.

First Paper (2003): “ER sensing using CNT”
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Cited 37th
Composites Science and Technology 67, 2121-2134 (2007) 
Self-sensing and interfacial evaluation of Ni nanowire/polymer
composites using electro-micromechanical technique

Random 
state

Aligned 
state

(a) 100–300 nm; (b) 300–800 nm and (c) 1–3 lm

(a) (b) (c)
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Cited 15th
Composites: Part A 82, 190–197 (2016)
Interfacial and mechanical properties of epoxy composites containing
carbon nanotubes grafted with alkyl chains of different length

(a) neat CNT; (b) methyl; (c) butyl; (d) octyl; (e) dodecyl; (f) octadecyl
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Interfacial Properties and Damage Sensing on CFRP 
Composites by VARTM using 2D or 3D ER 

Mapping
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• Background

Application
• Increasing in conductive materials, e,g, CNT, CFRP in nonconductive GF/PP composites

• New NDE for detecting durability evaluation of inter- and external parts

• Importance of dispersion of nano- and micro-particles such as carbon nanotube (CNT)

Conductive 
nanocomposites

(high modulus, light 
Weight)

<CF Composites examples>

<Plastic module> <Audio Case>

GF Composites Steel

<New materials for car>

Damage evaluation methods 
for new materials parts

(rapid, accurate)
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• Results and Discussions

(a)

(b)

Specimen and dispersion results of CF/PP-PA using 2D
mapping ER method: (a) specimen for dispersion; and (b)
dispersion results of CF/PP-PA using 2D mapping

Park et al, Composites: Part A, pp. 417 (2016). 

1 2 3 4

Silver pastePP tapeCu wire

PI tape

Steps of manufacture of contact ER probe on CF/polypropylene (PP)-polyamide (PA)

Arrangement of 2D ER mapping 
using 1 cell ER
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• Results and Discussions
Tensile results and weight loss of CF/PP-PA composites
with different CF/PP-PA parts: (a) tensile results; and (b)
weight loss results

Cyclic bending test of CF/PP-PA composites 
using 2D ER mapping

0.7 - 0.8 
0.6 - 0.7 
0.5 - 0.6 
0.4 - 0.5 
0.3 - 0.4 
0.2 - 0.3 
0.1 - 0.2 
0.0 - 0.1 
-0.1 - 0.0 
-0.2 - -0.1 
-0.3 - -0.2 
-0.4 - -0.3 

Unit: △R/R01 Max load

1 Min load

9 Max load

9 Min load

11 Max load

11 Min load

12 Max load

12 Min load
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• Experimental

Arrangement of 3D ER mapping on a 1 cell ER: (a) X,Y axis; (b) Z axis

(a) X,Y axis (b) Z axis

CF mat

InletCompressor
Consistence

pressure

Pressure
vessel

Video camera

Glass

Thickness
gauge

Pressure
transmitter

Schematic of permeability measurement
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• Results and discussion

Viscosity and permeability of 
epoxy and PVE

ILSS test of CF/epoxy and CF/PVE 
composites
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Static contact angle change about 
resin and CF mat in-situ

Epoxy PVE

Cited 4th
Composites Part B 115, pp. 178-186 (2018)
New evaluation of interfacial properties and damage sensing in CFRC by VARTM using 3D ER mapping
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Observation after drilling hole : (a) upper hole of CF/epoxy; (b) below hole of CF/epoxy; (c) upper hole of CF/PVE; and (d) below hole of CF/PVE

• Results and discussion

3D ER mapping as depth of hole: (a) Neat CF/PVE composite;
(b) 1.2 mm; (c) 2.4 mm; and (d) 3.7 mm

3D ER mapping as depth of hole: (a) Neat CF/epoxy composite;
(b) 1.2 mm; (c) 2.4 mm; and (d) 3.7 mm

Cross section 

0.5mm

Upper

Below

CF/epoxy

0.5mm

CF/PVE
Upper

Below

(a) (b)

(c) (d)

CF/epoxy composite CF/PVE composite

Cited 4th
Composites Part B 115, pp. 178-186 (2018)
New evaluation of interfacial properties and damage sensing in CFRC by VARTM using 3D ER mapping
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Cited 7st
Composites Science and Technology 201, 108480 (2021) 
2D electrical resistance (ER) mapping to Detect damage for carbon fiber
reinforced polyamide composites under tensile and flexure loading
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Applications: Transportation, Aerospace, Fire 
Retardant, Recycling, Construction, Marine etc

Part 4
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p-DCPD introduction: Defense, transfortation etc
Objectives: 

Improving neat p-DCPD 
properties

- Impact strength ↑
- Low temperature Impact strength↑
- Water-resisting properties ↑
- Machinability ↑

Adding
GF, CF

Targets
- Improved higher mechanical and

interfacial properties
- Civil & Military applications

Application

Ocean boat

Transportation

p-DCPD

Tungsten(W) Molibdenium(Mo) Ruthenium(Ru)

1, 2, 3 generation Catalysts
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P-DCPD Epoxy

- Izod impact strength is much better than thermosetting polymer
(Volvo Truck bump)

Condition
- Capacity : 40kg∙cm
- 1div : 0.4kg∙cm

DCPD advantage: Impact property
Transportation
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Lately quality of LGF/p-DCPD

R-RIM (Wet Injection molding)

Transportation

Tensile strength: 118 MPa
Flexural strength: 118 MPa
Impact strength: 1420 MPa (25oC)

1400 MPa (-40oC)

Un wetted

Micro void

Pull out

Fiber arrangement

Interface fractured

Early results

1 year research 
results

2 year research 
results

3 year research 
results

Lately quality of LGF/p-DCPD
Target
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Cited 14st
Composites Part B 123, 74-80 (2017)
Reinforcing effects of glass fiber/p-DCPD with fiber concentrations,
types, lengths and surface treatment

Modeling and photos of GF/p-DCPD illustrating the GF length effect: 
(a), (d) 3 mm GF/p-DCPD; (b), (e) 100 mm GF/p-DCPD; and (c), (f) 500 mm GF/p-DCPD

Mechanical property of LGF/p-DCPD composites with different fiber concentration:
(a) 0.3 mm E-GF/p-DPCD; (b) 50 mm E-GF/p-DCPD

Microdroplet test load versus embedded lengths of GF/p-DCPD with different 
surface treatments; (a) E-GF, and (b) H-GF.

Schematic model of GF/p-DCPD fiber surfaces with different treatments: (a) neat 
H-GF/p-DCPD; and (b) norbornene treated H-GF/p-DCPD.

Transportation
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Cited 2nd
Fibers and Polymers 19, 1989-1996 (2018)
Mechanical and Interfacial Properties of Glass Fiber (GF)/Poly-Dicyclopentadiene (p-
DCPD) Composites for Different Post Curing Conditions at Ambient and Low Temperatures

Process to manufacture GF/p-DCPD composites

DSC data Swelling and Density

Polarized photos of composites as different thermal treatment

Cyclic Loading Test Interfacial bonding

Transportation

Neat 120˚C

160˚C 200˚C

Neat

120˚C

160˚C

200˚C
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Cited 5th
Composites Part B 153, 420-428 (2018)
Evaluation of Interfacial and Mechanical Properties of Glass Fiber (GF) 
and p-DCPD Composites with Surface Treatment of Glass Fiber

Transportation

Process to manufacture Fragmentation specimen

Mechanical property

Polarized photos

Weibull distribution for IFSS

p-DCPD

Surface energy of materials

Schematics of interface between p-DCPD and GF
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Aerospace

Ultra chip emissionStart of 
drilling

Pull off drillDecreased chip 
emission

Modeling of
drilling result
of a) CVD
drill; (b) PCD
Drill

Ta↑: Good drilling
Ta↓: Bad drilling

Cited 6th
Journal of Composite Materials 47 (2013) 2005–2012
A new strategy of carbon fiber reinforced plastic drilling evaluation using 
thermal measurement
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Fire Retardant
Cited 76th
Composites: Part B 67, 22–29 (2014)
Effects of carbon nanotubes and carbon fiber reinforcements on thermal
conductivity and ablation properties of carbon/phenolic composites

(a) PR; (b) RCFPC; (c) MCFPC; and (d) MCF/CNTPC

Thermal conductivity Ablation ratio

Model of 
ablation 
phenomena

Front Side

Mathis TCi, C-Therm
Technologies
Ltd.)

𝐴𝑏𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
𝐵𝑎𝑐𝑘 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
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Cited 59th
Composites: Part B 60, 597–602 (2014)
Ablative and mechanical evaluation of CNT/phenolic composites
by thermal and microstructural analyses

Phenolic resin 0.1 vol% CNT/
Phenolic resin

0.3 vol% CNT/
Phenolic resin

CNT/
Phenolic resin

Phenolic resin

Fire Retardant
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Cited 20th
Composites: Part B 167, 221-230 (2017)
Interfacial Properties and Fire Retardance of Glass fiber/Unsaturated 
Polyester Composite using Ammonium Dihydrogen Phosphate

5 wt % 10 wt% 20 wt%

2nd flame

1st flame

Fire Retardant
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Cited 9th
Composite Structures 196, 21-29 (2018)
Evaluation of Thermally-Aged Carbon Fiber/Epoxy Composites using 
Acoustic Emission, Electrical Resistance and Thermogram

Thermal evaluation

Contact Angle

AE evaluation Electrical Evaluation

Neat

400 oC

0.2 mm

0.2 mm

Neat

400 oC
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Cited 9st
Fibers and Polymers 19, 1767-1775 (2018)
Investigation of Interfacial and Mechanical Properties of Various Thermally-
Recycled Carbon Fibers/Recycled PET Composites

Materials from waste CF, PET

Single Fiber Test

Embedded length  (μm)
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Recent & Current Works

Part 5
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• Current works
Pencil Drawn Paper Sensor (PDPS) 

- 3H pencil

2ed 4th 8th 16th

12
 m

m

40 mm

Compressive sensor

Tensile sensor

Drawing

FE-SEM

60 μm

30 μm

Surface Cross section

Pencil drawing
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Fibers and Polymers 21, 1560-1565 (2020)
Innovation of Pencil Lead Drawn Paper Sensors (PLDPS) Using Electrical Resistance (ER) Measurement:
I. Optimal Conditions of Interfacial, Mechanical, and Sensing Properties

Strain sensing of PLDPS with different pencil types

Strain sensing of PLDPS with different paper types

Configuration of different pencil lead types
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Flexural detecting results of FRP using pencil sensor 

•Results and Discussion

Before

After

1 mm

1 mm
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o 
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0 5 10 15 20 25

ILSS-Strain curve
Pencil sensor
Strain gauge
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Short beam test Flexural test

A specimen consisting of a single mass had a larger change in ER due to a stronger deformation
at the center than at the edge and at the lower side than at the side.
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Fibers and Polymers 21, 1566-1572 (2020)
Innovation of Pencil Lead Drawn Paper Sensors (PLDPS) Using Electrical Resistance (ER) Measurement:
II. Load, Micro-Damage, and Thermal Sensing on Composites by PLDPS

ER sensing of bending property of PLDPS Mechanical properties sensing of PLDPS

Damage mapping in impact test in-situ Damage mapping in hole drilling process in-situ
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Fibers and Polymers 20, 2400-2406 (2019)
Interfacial and Mechanical Properties of Carbon Fiber Reinforced
Polycarbonate (PC) Film and PC Fiber Impregnated Composites

Scheme of CNT-PC fiber manufacturing process Tensile strength of PC fiber with CNT containing

Wettability test of PC and CNT-PC fiber at same time Impregnation property of PC fiber with CNT containing by UD carbon fiber
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Cited 12th
Polymer Testing 81, 106247 (2020)
Thermal transfer, interfacial, and mechanical properties of carbon
fiber/polycarbonate-CNT composites using infrared thermography

Thermal observation of CNT-PC/CF composites

Scheme of ER measurement of CNT-PC/CF composites Thermal conductivity of CNT-PC/CF composites
Interfacial property of 
CNT-PC/CF composites
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Cited 5th
Composites Science and Technology 194, 108166 (2020)
Manufacturing and qualitative properties of glass fiber/epoxy composite boards with added air
bubbles for airborne and solid-borne sound insulation

Sound insulation measurement using AE and decibel meter

Fragmentation tests for AE with bubble containing
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Composites Part A 151, 106660 (2021)
Evaluation of interfacial, dispersion, and thermal properties of carbon Fiber/ABC added epoxy 
composites manufactured by VARTM and RFI methods

Neat-initial Neat-degraded

ABC-initial ABC-degraded

Fracture to 
interface Fracture to 

interface

Fracture to 
interface

Neat ABC added

• Thermal degradation of epoxy resin could be delayed using ABC addition.
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Composites Part A 151, 106660 (2021)
Evaluation of interfacial, dispersion, and thermal properties of carbon Fiber/ABC added epoxy 
composites manufactured by VARTM and RFI methods

ER mapping Weight

• The ABC dispersion could be improved using resin film injection(RFI) process.
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Topcoat modification for aircraft - Lightening strike protect (LSP) coating

Adhesion property of CNT/PU topcoat with different CNT weight 
fractions

CNT oxidation method FT-IR analysis of neat 
and oxidized CNT

Dispersion of neat and oxidized CNT in 
topcoat Electrical properties of CNT/PU topcoat with CNT weight fractions

(MOhm) (Ohm)

3 wt%2 wt%1 wt%

Progress in Organic Coatings, Vol. 163 in press (2022)
Interfacial, electrical, and mechanical properties of MWCNT in polyurethane nanocomposite coating via 2D electrical resistance mapping for aircraft  topcoat
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Surface roughness and hydrophobicity of SiO2/PU topcoat

Frost formation of SiO2/PU topcoat

Neat 10 wt% SiO2 coated

Materials to improve anti- and de-icing

Surface area of SiO2/PU topcoat

- Delayed starting time of the frost for 20 min.

Topcoat surface modification for aircraft
- Anti-icing and de-icing coating
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Micro-impregnation property using capillary test

Capillary test with different sizing agent amounts

Triple fiber fragmentation test with different sizing agent amounts

Washburn’s equation

h : flow front position
c : parameter taking into account tortuosity
r : mean porous radius
θa: apparent advancing contact angle
γL: liquid surface tension
η : viscosity

Capillary test of resin into fiber bundle

Wettability with different sizing agent amounts

3 μm

Desized 60E

3 μm

50C

3 μm

1 mm 1 mm1 mm

5 μm

70°

5 μm

46°
Desized 60E 50C

5 μm

24°

Composites Science and Technology in press (2022)
Innovative Wicking and Interfacial Evaluation of Carbon Fiber (CF)/Epoxy Composites by CF 
tow Capillary Glass Tube Method (TCGTM) with Tripe-CF Fragmentation Test

• The weight of capillary specimens was measured to evaluate capillary properties of epoxy resin with different sizing agent.

• The 50C type of carbon fiber was optimized interfacial property and wettability than other fibers.
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Improvement of adhesive property with inserting GFRP
Composites Part B submitted (2022)
Innovative Effects on GFRP Inserted Epoxy Adhesives with the Different Thicknesses for 
Bonding Wind Turbine Blades of Two Parts 

• In the case of GFRP inserted specimen, the adhesive part was more deformed significantly than the only epoxy 
adhesive used case. 

• It caused by the GFRP exhibited lower shear modulus than neat epoxy adhesive. 
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Improvement of adhesive property with inserting GFRP
Composites Part B submitted (2022)
Innovative Effects on GFRP Inserted Epoxy Adhesives with the Different Thicknesses for 
Bonding Wind Turbine Blades of Two Parts 

• The fracture and shear behaviors could be monitored using ER variation of CFRP substrate.
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- Evaluation of interfacial property of composite materials is 
very important issue to control desirable total performance of 
composite materials under humid, especially extreme 
(cryogenic) and long term environments.

- Electro-micromechanical testing methods can evaluate 
interfacial properties such IFSS, microfailure, durability by 
combining with electrical resistance (ER) measurements and 
2D and 3D mapping.

- ER can also provide valuable composites information on 
micro- & macro-damage sensing, interfacial adhesion, 
permeability, curing procedure, and durability etc.

- Practical applications for structural composites with my lab. 
work can be available for aerospace (top coating, de-icing), 
automobile, home appliance, defense, sports, marine, civil etc.

General Total Summaries
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Inquires, Comments?
Thank you!


